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The temperature variation of the Debye-Waller factor is calculated for copper on the basis of the aniso
tropic dispersive continuum model. The results are compared with x-ray measurements of Flinn et al. and the 
other theoretical calculations of this factor from different Born-von Karman force models. The Debye-
Waller factor is not very sensitive to the details of the frequency spectrum. The frequency distribution func
tion for vanadium is also calculated on the basis of the anisotropic dispersive continuum model. The results of 
this calculation, as well as many other force-model calculations, yield a poor representation of the frequency 
spectrum, for which experimental measurements from the inelastic incoherent neutron scattering techniques 
;are available. 

I. INTRODUCTION 

RECENTLY it was shown1 that the anisotropic 
dispersive-continuum model gives a reasonable 

description of the lattice dynamics of solids and is 
convenient enough for a calculation of a physical 
property governed by the details of the phonon spec
trum. This model provides a satisfactory explanation of 
the temperature variation of the Grtineisen parameter 
for copper.2 It was thought worthwhile to compute the 
Debye-Waller factor on the basis of this model and to 
compare it with the values predicted for it from various 
other models and also with experimental results in the 
case of copper. We have also presented a calculation of 
the frequency spectrum of vanadium on the basis of 
this model and have compared it with an experimentally 
determined frequency spectrum. 

II. DEBYE-WALLER FACTOR 

The Debye-Waller factor enters into a large number 
of solid-state phenomena such as the Mossbauer effect, 
neutron scattering, x-ray diffraction, electrical con
ductivity, etc., and can also be correlated with the 
thermodynamic data, like specific heat. Recently, Flinn 
et al} reported on the x-ray determination of the Debye-
Waller factor for copper by making x-ray intensity 
measurements from 4-500 °K. They were able to inter
pret the experimental results in terms of a central-force 
model with first- and second-neighbor interactions. 
DeWames et al} have discussed the Debye-Waller 
factor of copper predicted by various force-constant 
models in the face of the experiments of Flinn et al. It 
would be interesting to compare the Debye-Waller 
factor calculated on the basis of the simple anisotropic 
dispersive continuum model with the earlier experi
mental and theoretical findings. 

A. Theory 
In the expression giving the intensities of the non-

resonant elastically scattered waves (of slow neutrons, 
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x rays, etc.), from scatterers which are bound in crys
tals, the effect of the zero point and temperature motion 
of the scatterer is contained in the Debye-Waller factor 
which multiplies the fixed scatterer intensities, and is 
given by 

where 
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For a monatomic lattice of cubic symmetry, the ex
ponent 2PP̂  is completely determined by the lattice 
vibrational frequency spectrum and is proportional to 
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In these expressions N is the total number of unit ceils 
in the crystal, s and So the wave vectors of the scattered 
and incident waves, egj the polarization vector of the 
vibrational wave with frequency ooqj and average popu
lation nq3; k the Boltzmann constant, T the absolute 
temperature, ft the Planck's constant divided by 2w, and 
the summation is over all the wave vectors q and polari
zation branches j . Replacing the summation over q by 
an integration, Eq. (2) reduces to 
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Here Q is the solid angle in wave-vector space. In the 
anisotropic dispersive continuum model the frequency 
wave vector relation is of the form 

o>qj=Cj(2Q/w)sm(Tq/2Q), (4) 

where C3- are the velocities of sound with different 
polarizations, given by the three roots of the third-order 
Christoffel equation and the Brillouin zone is replaced 
by a Debye sphere of radius Q. Therefore, 
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TABLE I. The values of X(T) for copper (in eV^XlO2). 

Temperature 
(°K) 

30 
50 

100 
200 
300 
400 
500 

e 
(°K) 

317.7dblO 
317.7±10 
319 
330 
315 
300 
307 

±10 
±10 
±10 
±10 
±10 

Experimental 

X(T) 

0.547±0.017 
0.638±0.026 
0.861 ±0.042 
1.373±0.078 
2.170±0.135 
3.127±0.209 
3.733±0.240 

Anisotropic dispersive 
continuum model 

X(T) 
(Debye-Waller 

frequency 
integral) 

0.626 
0.684 
0.955 
1.658 
2.387 
3.173 
4.019 

X(T) 
(Houston's 
method) 

0.551 
0.597 
0.844 
1.479 
2.239 
3.080 
3.973 

Xn(T) 
(Debye 

approximation 
with@=335°K) 

0.520 
0.595 
0.796 
1.335 
1.922 
2.523 
3.141 

Here a=2CjQ/ir. X(T) can also be written directly 
from (3) in terms of the frequency-distribution function 
G(«): 
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hereafter called the "Debye-Waller frequency integral." 

B. Results and Discussion 

X(T) was evaluated from (5) and (6) separately. In 
the evaluation of X(T) from (5), the integration over co 
was performed numerically and the integration over 12 
was carried out by using a modified Houston's spherical 
six-term integration procedure as developed by Betts 
et al.5 The six directions used in this procedure are 
[001], [101], [111], [102], [112], and [212]. In this 
particular method wTe have taken account of anhar-
monicities in an approximate way by considering the 
temperature variation of the elastic constants and the 
thermal expansion of the lattice in the computation of 
lattice frequencies. The pertinent elastic data at 
different temperatures are due to Overton and Gaffney6 

and the lattice parameter values at various temperatures 
are from Pearson.7 To compute X(T) from the Debye-
Waller frequency integral (6), use was made of the 
frequency distribution function for copper correspond
ing to 0°K calculated in an earlier paper,1 and the inte
gration was performed numerically. 

The values of X(T) calculated in the above-men
tioned two ways have been given at different tempera
tures in Table I along with the experimental data. The 
frequency distribution function G{cc), calculated by 
sampling method can not be very accurate at the ex
treme low-frequency end because of the coarseness of 
the mesh used. I t is therefore thought that at low 
temperatures where lower frequencies have a pre
dominating influence, Houston's method will yield more 

6 D. D. Betts, A. B. Bhatia, and M. Wyman, Phys. Rev. 104, 
37, (1956). 

6 W. C. Overton and J. Gaffney, Phys. Rev. 98, 969 (1955). 
7 W. B. Pearson, A Handbook of Lattice Spacings and Structures 

of Metals and Alloys, (Pergamon Press, Inc., New York, 1958), 
p. 570. 

reliable values of X(T). This is evident from the better 
agreement with the experimental results of X(T) values 
deduced from Houston's method in comparison to those 
obtained from the Debye-Waller frequency integral. 
On the other hand, Houston's method becomes un
reliable at high frequencies. Therefore the high-
temperature X(T) values given by this method will not 
be accurate. But at high temperatures (say greater than 
300°K) anharmonicities will have a slightly vitiating 
influence on our findings.7'8 As pointed out above we 
have considered anharmonicity when using Houston's 
procedure. For the sake of comparison we have also 
given X(T) values calculated on the basis of the Debye 
model using @ = 335°K. The defining equation for 
X(T) in the Debye approximation is 

9NWr1 1 
XD(T) = - + - -dy 
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with x=®/T. Our results indicate that the Debye 
model does not yield satisfactory results. If we compare 
the values of X(T) deduced by DeWames et al} from 
various other Born-von Karman force models, we find 
that the Debye-Waller factor is quite insensitive to the 
details of the frequency spectrum and can yield little 
detailed information about the actual frequency 
spectrum. 

III. FREQUENCY SPECTRUM OF VANADIUM 

Eisenhauer et al.10 and Stewart and Brockhouse11 

have used the inelastic incoherent neutron-scattering 
technique to measure the lattice vibration spectrum of 
vanadium. Recently the frequency spectrum has again 
been measured experimentally at 206, 300, and 806°K 
by Turberfield and Egelstaff.12 The neutron-scattering 
cross section of vanadium is almost entirely incoherent 

8 A. A. Maradudin and P. A. Flinn, Phys. Rev. 129, 2529 (1963). 
9 H. Hahn and W. Ludwig, Z. Physik 161, 404 (1961). 
10 C. M. Eisenhauer, I. Pelah, D. J. Hughes, and H. Palevsky, 

Phys. Rev. 109, 1046 (1958). 
11 A. T. Stewart and B. N. Brockhouse, Rev. Mod. Phys. 30, 

250 (1958). 
12 K. C. Turberfield and P. A. Egelstaff, Phys. Rev. 127, 1017 

(1962). 
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and the frequency-distribution function G(w) can be 
obtained directly from the measured energy distribution 
of the neutrons scattered from a polycrystalline sample 
of the material. Vanadium is one of the most aniso
tropic cubic (body-centered) crystals, and the various 
Bom-von Karman force-constant models yield a very 
poor representation of the frequency distribution of 
vanadium.13-16 It would be interesting to see how the 
anisotropic dispersive continuum model works on 
vanadium. 

The procedure for calculating the frequency spectrum 
based on the anisotropic dispersive continuum model is 
exactly the same as has been already described in detail 
in an earlier paper.1 Figure 1 shows the smoothed calcu
lated frequency distribution curve together with the 
experimental curve of Eisenhauer et al.1Q For com
parison we have also shown the curves calculated by 
Hendricks et al.u for a noncentral three-force-constant 
model and by Clark et a/.,16 for a noncentral four-
constant model. The curves have been normalized to 
the same area. Because of the uncertainty in the upper 
end of the experimental curve, we have arbitrarily cut 
it off at 5.65X1013 rad/sec for normalization. The room-
temperature elastic constants for vanadium are those of 
Alers17 and are given below together with other per
tinent data: 

Cn-22.795XlOn dyn-cm-2, 

Ci2= 11.870X 1011 dyn-cm"2, 

C44=4.255 X1011 dyn-cm"2, 

density, p— 6.022 gm-cm~3, 

atomic volume, 0 = 13.879 A3. 

Several features of the frequency distribution curves 
are of interest. The calculated and experimental fre
quency distributions are quite different with regard to 
the location of the two peaks, with the calculated fre
quency distributions having more widely spread 
maxima. In addition the high-frequency peak of the 
experimental curve is more intense than the low-
frequency one, whereas all the calculations lead to just 
the opposite result. The maximum frequency of our 
calculated spectrum is in fair agreement with experi
ment, although the experimental value is not very well 
defined. Our calculation is somewhat nearer in results 

18 C. B. Clark, J. Grad. Res. Center 29, 10 (1961). 
14 J. B. Hendricks, H. B. Riser, and C. B. Clark, Phys. Rev. 

130, 1377 (1963). 
16 B. Sharan, J. Chem. Phys. 36, 1117 (1962). 
16 B. C. Clark (private communication). We are indebted to 

G. A. Alers for bringing the work of Clark, Gazis, and Wallis to 
our notice. 
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FIG. 1. The frequency spectrum of vanadium. The smooth solid 
curve is the spectrum calculated using the anisotropic dispersive 
continuum model; the dashed curve is the spectrum calculated 
by Hendricks et al. using a noncentral three-force-constant model; 
the dash-dot curve is calculated from the four-constant model of 
Clark et al.; and the dotted curve is obtained from the neutron 
scattering experiments of Eisenhauer et al. 

to calculations based on de Launay's three-constant 
model than that from the four-constant model of Clark, 
Gazis, and Wallis. It appears that vanadium has some
thing special about its lattice dynamics. The interesting 
experiments of Turberfield and Egelstaff12 show a tail of 
the frequency spectrum at high frequencies, and also 
that the spectrum does not obey the Debye w2 law at 
the lowest frequencies at which they were able to make 
measurements. No explanation of these effects has been 
given at the present time. An experimental investigation 
of the dispersion curves for the lattice waves through 
diffuse x-ray scattering would be revealing and would 
throw much light on the lattice dynamics of vanadium. 
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